Abstract

Phenolic acid decarboxylase (PAD) catalyzes the non-oxidative decarboxylation of p-coumaric acid (pCA) to p-hydroxystyrene (pHS). PAD from Bacillus amyloliquefaciens (BAPAD), which showed k (cat)/K (m) value for pCA (9.3 × 10³ mM⁻¹ s⁻¹), was found as the most active one using the "Subgrouping Automata" program and by comparing enzyme activity. However, the production of pHS of recombinant Escherichia coli harboring BAPAD showed only a 22.7 % conversion yield due to product inhibition. Based on the partition coefficient of pHS and biocompatibility of the cell, 1-octanol was selected for the biphasic reaction. The conversion yield increased up to 98.0 % and 0.83 g/h/g DCW productivity was achieved at 100 mM pCA using equal volume of 1-octanol as an organic solvent. In the optimized biphasic reactor, using a three volume ratio of 1-octanol to phosphate buffer phase (50 mM, pH 7.0), the recombinant E. coli produced pHS with a 88.7 % conversion yield and 1.34 g/h/g DCW productivity at 300 mM pCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.