Abstract

The wastewater from the cookers of a tuna-canning plant was used as feedstock for the process. It was acidified in a continuous stirred tank reactor (CSTR) of 1.5 L to produce a mixture of volatile fatty acids (VFAs). The effluent contained 28.3 ± 8.7 g CODS/L and 25.0 ± 4.6 g CODVFA/L, 4.4 ± 1.6 g NH4+/L, and 10.9 ± 4.0 g Na+/L, which corresponds to about 28 g NaCl/L approximately. This was used to feed a PHA production system. The enriched MMC presented a capacity to accumulate PHAs from the fermented tuna wastewater. The maximum PHA content of the biomass in the fed-batch (8.35 wt% PHA) seemed very low, possibly due to the variable salinity (from 2.2 up to 12.3 g NaCl/L) and the presence of ammonium (which promoted the biomass growth). The batch assay showed a PHA accumulation of 5.70 wt% PHA, but this is a much better result if the productivity of the reactor is taken into account. The fed-batch reactor had a productivity of 10.3 mg PHA/(L h), while the batch value was about five times higher (55.4 mg PHA/(L h)). At the sight of the results, it can be seen that the acidification of fish-canning wastewater is possible even at high saline concentrations (27.7 g NaCl/L). On the other hand, the enrichment and accumulation results show us promising news and which direction has to be followed: PHAs can be obtained from challenging substrates, and the feeding mode during the accumulation stage has an important role to play when it comes to inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.