Abstract

Polyhydroxyalkanoate (PHA) is a biodegradable plastic that can be used to replace petroleum-based plastic. In addition, as a medium-chain-length PHA (mcl-PHA), it can be used to provide elastomeric properties in specific applications. Because of these characteristics, recently, there has been much research on mcl-PHA production using inexpensive biomass materials as substrates. In this study, mcl-PHA producers were screened using alkanes (n-octane, n-decane, and n-dodecane) as sources of carbon. The amount of PHA produced by Pseudomonas resinovorans using sole n-octane, n-decane, or n-dodecane was 0.48 g/L, 0.27 g/L, or 0.07 g/L, respectively, while that produced using mixed alkane was 0.74 g/L. As a larger amount of PHA was produced using mixed alkane compared with sole alkane, a statistical mixture analysis was used to determine the optimal ratio of alkanes in the mixture. The optimal ratio predicted by the analysis was a medium with 9.15% n-octane, 6.44% n-decane, and 4.29% n-dodecane. In addition, through several concentration-specific experiments, the optimum concentrations of nitrogen and phosphorus for cell growth and maximum PHA production were determined as 0.05% and 1.0%, respectively. Finally, under the determined optimal conditions, 2.1 g/L of mcl-PHA and 60% PHA content were obtained using P. resinovorans in a 7 L fermenter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call