Abstract

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call