Abstract

Starch industry wastewater (SWW), slaughterhouse wastewater (SHWW) and secondary sludges from three different wastewater treatment plants (Jonquière—JQS, Communauté Urbaine de Québec—CUQS and Black lake—BLS) were used as raw materials for the production of Bacillus thuringiensis (Bt) based biopesticides in a pilot scale fermentor (100 L working volume). The slaughterhouse wastewater exhibited the lowest Bt growth and entomotoxcity (Tx) potential (measured against spruce budworm) due to low availability of carbon, nitrogen and other nutrients. Performance variation (growth, sporulation, proteolytic activity and Tx potential) within the three types of sludges was directly related to the availability of nitrogen and carbohydrates, which could change with sludge origin and methods employed for its generation. The Tx potential of Bt obtained in different secondary sludges (JQS: 12 × 10 9 SBU/L; CUQS: 13 × 10 9 SBU/L and BLS: 16 × 10 9 SBU/L) and SWW (18 × 10 9 SBU/L) was higher than the soybean based synthetic medium (10 × 10 9 SBU/L). The maximum protease activity was obtained in CUQ secondary sludge (4.1 IU/mL) due to its high complex protein concentration. Nevertheless, high carbohydrate concentration in SWW repressed enzyme production. The secondary sludges and SWW were found to be suitable raw materials for high potency Bt biopesticide production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.