Abstract

Nanofluid thermal applications considerably enhanced the heat and mass transfer patterns, which plays novel role in many bio-technological, renewable energy and engineering applications. Many prime applications off nanomaterials have been inspected in solar energy and thermal engineering issues to benefit human society. Furthermore, motile microorganisms, that have applications in petroleum sciences, enzymes biotechnology, biofuels, pharmaceutical, and other fields, greatly improve the stability of nanofluids. The current study examines the Darcy-Forchhiemer accelerating flow of Eyring-Powell nanofluid over an oscillating surface which contains the thermal radiations and gyrotactic microorganisms. The extension in the heat and mass transfer expression is suggested by following the relations of Cattaneo–Christov theory. Furthermore, the non-uniform heat source/sink phenomenon is also being focused to improve the thermal aspect of model. The flow problem model is consisting of non-linear PDEs that are solved by using the homotopy analysis scheme. After highlighting the convergence zone, physical characteristics for parameters are listed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.