Abstract
We have investigated the bioconvection of Paramecium tetraurelia in high-density suspensions made by centrifugal concentration. When a suspension is kept at rest in a Hele-Shaw cell, a crowded front of paramecia is formed in the vicinity of the bottom and it propagates gradually toward the water-air interface. Fluid convection occurs under this front, and it is driven persistently by the upward swimming of paramecia. The roll structures of the bioconvection become turbulent with an increase in the depth of the suspension; they also change rapidly as the density of paramecia increases. Our experimental results suggest that lack of oxygen in the suspension causes the active individual motions of paramecia to induce the formation of this front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.