Abstract

Soil Actinomycetes have been used as biocontrol agents against soil-borne plant diseases, yet little is known about their effects on the structure of the rhizosphere microbiota and the long-term effects on crop yield and disease intensity after the application of Actinomycetes is stopped. Here, we conducted 3-year plot experiments to investigate the roles of two Actinomycetes strains (Streptomyces pactum Act12 and Streptomyces rochei D74) in the biocontrol of soil-borne root diseases and growth promotion of monkhood (Aconitum carmichaelii). We also examined their long-term effects after soil application of a mixed Actinomycetes preparation (spore powder) was completed. High-throughput sequencing was used to analyze shifts in the rhizosphere microbiota. The antifungal activity and root colonization ability of the two Actinomycetes were also tested. Disease severity of southern blight and root rot decreased following application of the Actinomycetes preparation, whereas biomass yield of tubers increased compared with the control group. Significant effects of disease control and plant growth promotion were also observed after application was stopped. The Actinomycetes preparation induced marked increases in the abundance of beneficial microbes and decreases in the abundance of harmful microbes in rhizosphere soil. Adding cell-free culture filtrates of both strains Act12 and D74 inhibited the growth of fungal pathogens capable of causing southern blight (Sclerotium rolfsii) and root rot (Fusarium oxysporum) in A. carmichaelii. A GFP-labeled strain was used to show that D74 can colonize roots of A. carmichaelii. In conclusion, a preparation of two Actinomycetes plays a role in the biocontrol of root diseases and growth promotion of A. carmichaelii by inhibiting pathogen growth and shaping the rhizosphere microbiota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call