Abstract

Background Random induced mutation by gamma radiation is one of the genetic manipulation strategies to improve the antagonistic ability of biocontrol agents. Objectives This study aimed to induce mutants with more sporulation, colonization rate leading to enhanced antagonistic ability (in vitro assay) comparing to wild type (WT) and the assessment of genetic differences (in situ evaluation) using molecular markers. The superior mutants could be appropriate biocontrol agents against soil borne fungal diseases. Materials and Methods In this research sampling and isolation of Trichoderma isolates were performed from soils with low incidence of soil borne disease. T. harzianum 65 was selected and irradiation was conducted with gammacell at optimal dose 250 Gray/s. Mutants (115) were obtained from the WT. The antagonistic abilities of twenty-four mutants were evaluated using dual culture and culture filtrate tests. Results The results of in vitro assays revealed that Th15, Th11 and Th1 mutants exhibited stronger growth inhibition (GI) and colonization rate on Macrophomina phaseolina and Rhizoctonia solani AG4 compared to the wild type. Th15 and Th11 mutants exhibited stronger GI and colonization rate on Sclerotinia sclerotiorum in dual culture and culture filtrate tests and Th1 and Th11 mutants exhibited stronger GI on Fusarium grminearum in culture filtrate test. The DNA fingerprinting was carried out using RAPD and rep-PCR markers. Two (Th9 and Th17) out of the 24 mutants categorized distantly from the rest based on different polymorphism obtained by molecular markers. However, Th9 was different in GI% from Th17. RAPD analysis separated WT from mutants, Th9 from Th17 and also phenotypically superior mutants from other mutants. Meanwhile, rep-PCR analysis categorized WT isolate and mutants according to their antagonistic properties. Conclusions The latter marker (rep-PCR) appeared to be reproducible and simple to distinguish mutants from a single isolate of T. harzianum. Mutants (3 isolates) were phenotypically and genotypically distinct from WT. These mutants demonstrated a pronounced biocontrol activities against soilborne fungal phytopathogens.

Highlights

  • Random induced mutation by gamma radiation is one of the genetic manipulation strategies to improve the antagonistic ability of biocontrol agents

  • Soilborne fungal plant pathogens including F. graminearum (Fusarium head blight of wheat), S. sclerotiorum (Sclerotinia stem rot of canola), M. phaseolina and R. solani AG4 were received from the Culture Collection of the Tarbiat Modares University

  • Mutants [115] were obtained from wild type (WT) (Th65) and were all tested for growth inhibition against R. solani

Read more

Summary

Introduction

Random induced mutation by gamma radiation is one of the genetic manipulation strategies to improve the antagonistic ability of biocontrol agents. Objectives: This study aimed to induce mutants with more sporulation, colonization rate leading to enhanced antagonistic ability (in vitro assay) comparing to wild type (WT) and the assessment of genetic differences (in situ evaluation) using molecular markers. Rep-PCR analysis categorized WT isolate and mutants according to their antagonistic properties. Conclusions: The latter marker (rep-PCR) appeared to be reproducible and simple to distinguish mutants from a single isolate of T. harzianum. Mutants (3 isolates) were phenotypically and genotypically distinct from WT These mutants demonstrated a pronounced biocontrol activities against soilborne fungal phytopathogens. Several researchers have studied the enhancement of some metabolic functions such as secretion of extracellular cell wall-degrading enzymes and antibiotic production of mycoparasite Trichoderma isolates after a treatment by physical mutagens (8, 9, 10, 5 and 11)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call