Abstract

Immunoassays employ antibodies and labels to capture and detect target macromolecular analytes, often from complex sample matrices such as serum, plasma, or saliva. The high affinity and specificity of antibody-antigen interactions makes immunoassays critically important analytical techniques for clinical diagnostics as well as other research applications in the areas of pharmaceutical and environmental analysis. Integration of magnetic beads (MBs) into immunoassays and other bioanalytical methodologies is a valuable approach to allow efficient target capture, enrichment, and convenient separation. In addition, large signal amplification can be achieved by preconcentration of the target and by attaching many thousands of enzyme labels to the MBs. These features have enabled MB-based biosensors to achieve ultra-low detection limits needed for advanced clinical diagnostics that are challenging or impossible using traditional immunoassays. MBs are employed either as mobile substrates for target analyte capture, as detection labels (or label carriers), or simultaneously as substrates and labels. For optimal assay performance, it is crucial to apply an easy, efficient, and robust bead-probe conjugation protocol, and to thoroughly characterize the bioconjugated products. Herein, we describe methods used in our laboratory to functionalize MBs with antibodies and enzyme labels for ultrasensitive detection of protein analytes. We also present detailed strategies for characterizing the MB bioconjugates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.