Abstract

BackgroundBioconjugates of a polyamidoamine (PAMAM) G3 dendrimer and an aldehyde were synthesized as carriers for vitamins A and B6, and the bioavailability of these vitamins for skin nutrition was investigated.MethodsNuclear magnetic resonance (NMR) and ultraviolet-visible methods were used to characterize the structure of the bioconjugates and for monitoring release of pyridoxal (Pyr) and pyridoxal phosphate (PLP) from these bioconjugates in vitro. A skin model permeation of bioconjugates was also studied in a Franz chamber.ResultsA transdermal G3 PAMAM dendrimer was used to synthesize bioconjugates with trans-retinal (Ret), pyridoxal (Pyr), or PLP. These nanomolecules, containing up to four covalently linked Ret, Pyr, or PLP (G34Ret, G34Pyr, and G34PLP), were able to permeate the skin, as demonstrated in vitro using a model skin membrane. PLP and Pyr bound to a macromolecular vehicle were active cofactors for glutamic pyruvic transaminase, as shown by 1H NMR spectral monitoring of the progress of the L-alanine + α-ketoglutarate → glutamic acid + pyruvic acid reaction.ConclusionPAMAM-PLP, PAMAM-Pyr, and PAMAM-Ret bioconjugates are able to permeate the skin. PLP and Pyr are available as cofactors for glutamic pyruvic transaminase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.