Abstract

The biomedical application of discrete supramolecular metal-based structures, specifically self-assembled metallacages, is still an emergent field of study. Capitalizing on the knowledge gained in recent years on the development of 3-dimensional (3D) metallacages as novel drug delivery systems and theranostic agents, we explore here the possibility to target [Pd2L4]4+ cages (L = 3,5-bis(3-ethynylpyridine)phenyl ligand) to the brain. In detail, a new water-soluble homoleptic cage (CPepH3) tethered to a blood brain barrier (BBB)-translocating peptide was synthesized by a combination of solid-phase peptide synthesis (SPPS) and self-assembly procedures. The cage translocation efficacy was assessed by inductively coupled mass spectrometry (ICP-MS) in a BBB cellular model in vitro. Biodistribution studies of the radiolabeled cage [[99mTcO4]- ⊂ CPepH3] in the CD1 mice model demonstrate its brain penetration properties in vivo. Further DFT studies were conducted to model the structure of the [[99mTcO4]- ⊂ cage] complex. Moreover, the encapsulation capabilities and stability of the cage were investigated using the [ReO4]- anion, the "cold" analogue of [99mTcO4]-, by 1H NMR spectroscopy. Overall, our study constitutes another proof-of-concept of the unique potential of supramolecular coordination complexes for modifying the physiochemical and biodistribution properties of diagnostic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.