Abstract

Organophosphate flame retardants are ubiquitous environmental contaminants; however, knowledge is limited regarding their environmental health risks and toxicity. Here, we investigated the effects of acute and long-term exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) to the nervous system of zebrafish. Zebrafish embryos (2h post-fertilization) were exposed to TDCPP (0–100μg/L) for 6 months up until sexual maturation. Concentrations of TDCPP and its metabolic product (bis(1,3-dichloro-2-propyl) phosphate, BDCPP) were measured in the tissues of 5 day post-fertilization (dpf) larvae. There was no effect on locomotion, acetylcholinesterase activity, levels of the neurotransmitters dopamine and serotonin, and expression of mRNAs and proteins related to central nervous system development (e.g., myelin basic protein, α1-tubulin) in any exposure group. However, in adult fish, reductions of dopamine and serotonin levels were detected in the brains of females but not males. Downregulation of nervous system development genes was observed in both the male and female brain tissues. TDCPP concentrations were measured in adult fish tissues including the brain, and greater levels were detected in females. Our results showed that females are more sensitive to TDCPP stress than males in terms of TDCPP-induced neurotoxicity. We demonstrate that long-term exposure to lower concentrations of TDCPP in fish can lead to neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.