Abstract

Stealth nanocarriers are a promising technology for the treatment of diseases. However, the preparation and characterization of well-defined soft nanoparticulate systems remain challenging. Here we describe a platform of amphiphilic graft copolymers leading to nanoparticles with multiple morphologies and the role of the hydrophilic backbone in their interaction with a model protein. The amphiphilic graft copolymers platform was composed of hydrophilic backbone poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline) (P(MeOx-co-PentOx)), prepared via cationic ring-opening polymerization. Hydrophobic poly(d,l-lactide) (PLA) chains were grafted on the backbone via Huisgen 1,3-dipolar cycloaddition. The "click" copper-catalyzed cycloaddition reactions of azides with alkynes (CuAAC) were successfully carried out, and a series of amphiphilic copolymers were prepared containing a backbone with a number-average molecular weight of 14.2 × 103 g mol-1 and different hydrophobic PLA grafts with various molecular weights (2.8 × 103-12.4 × 103 g mol-1). These original architectures of copolymers, when nanoprecipitated in water, the backbone-selective solvent, allowed us to obtain various structures of nanoparticles with a hydrodynamic diameter in the range of 65-99 nm. More interestingly, a plurality of morphologies going from unilamellar, multilamellar, and large compound vesicles to core-shell nanoparticles and depending on the PLA molecular weights were evidenced by combining cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) studies. A first evaluation of their stealthiness by studying the stability and the interaction of these nano-objects with a model protein revealed the role played by the P(MeOx-co-PentOx) in these interactions, demonstrating the utility of this amphiphilic graft copolymers platform with well-defined architectures for the design of nanocarriers in drug delivery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.