Abstract

The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery. Therefore, in the present study, we focused on the investigation of the interactions between biocompatible polymeric NPs and a murine macrophage cell line (RAW 264.7) and a human monocytic leukemia cell line (THP-1). NPs based on a liquid core with polyelectrolyte shells were prepared by sequential adsorption of polyelectrolytes (LbL) using AOT (docusate sodium salt) as the emulsifier and the biocompatible polyelectrolytes polyanion PGA (poly-l-glutamic acid sodium salt) and polycation PLL (poly l-lysine). The average size of the obtained NPs was 80 nm. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the NPs (charge, size, surface modification) on viability, phagocytosis potential, and endocytosis was studied. Internalization of NPs was determined by flow cytometry and confocal microscopy. Moreover, we evaluated whether addition of PEG chains downregulates particle uptake by phagocytic cells. The presented results confirm that the obtained PEG-grafted NPs are promising candidates for drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.