Abstract
The present work involved development of phospholipid-based permeation enhancing nanovesicles (PENVs) for topical delivery of ketoprofen. Screening of phospholipids and process parameters was performed. Central composite design was used for optimization of factors, that is, amount (%, w/w) of phospholipid and ethanol at three levels. The optimized nanovesicles (NVs) were loaded with different terpenes and then incorporated into a gel base. Optimized NVs exhibited 69% entrapment efficiency, 51% transmittance, 328nm mean vesicle size, and polydispersity index of 0.25. In vitro release kinetics evaluation indicated best fitting as per Korsemeyer-Peppa's model and drug release via Fickian-diffusion mechanism. The optimized NVs loaded with mint terpene showed minimal degree of deformability and maximal elasticity as compared with the conventional NVs and liposomes. Rheology and texture analysis indicated pseudoplastic flow and smooth texture of the vesicle gel formulation. Ex vivo permeation studies across Wistar rat skin indicated low penetration (0.43-fold decrease) and high skin retention (4.26-fold increase) of ketoprofen from the optimized PENVs gel vis-à-vis the conventional gel. Skin irritancy study indicated lower scores for PENVs gel construing its biocompatible nature. Stability studies confirmed cold storage is best suitable for vesicle gel, and optimized PENVs were found to be suitable for topical delivery of ketoprofen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.