Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are potent therapeutic arsenals for targeting gastrointestinal pathogens and a promising alternative to antibiotics, because of their selective activity and reduced propensity to trigger collateral damage to the beneficial gut microbes. However, proteolytic inactivation in the gastric niche renders bacteriocins ineffective. The present study addresses this challenge and demonstrates that a biocompatible milk protein fraction can be leveraged to generate a robust nanocargo, which renders protection from proteolysis in the gastric milieu and facilitates delivery of the encapsulated bacteriocin pediocin. In a simulated gastric transit experiment, pediocin-loaded milk protein nanocomposite (Ped-MNC) could render a 3.0 log reduction in the viability of model gastrointestinal pathogens. Ped-MNC is nontoxic to cultured human intestinal cells (HT-29 cells) and effectively abrogates pathogenic bacteria adhering onto intestinal cells. In a combinatorial regimen, Ped-MNC and the beneficial LAB Lactobacillus plantarum DF9 could substantially reduce the levels of the pathogen Enterococcus faecalis MTCC 439 adhering onto HT-29 cells and interestingly the nanocomposite does not hinder adhesion of intestinal cells by the beneficial LAB. The developed nanocomposite holds promise as a niche specific therapeutic for selective mitigation of intestinal pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.