Abstract

The one-pot synthesis of iron-doped carbon quantum dots (Fe-CQDs) for use as both magnetic resonance (MR) and fluorescent (dual-mode) imaging nanoprobes is described. Comprehensive characterizations of the material confirmed the successful doping of the CQDs with Fe(II) ions. The imaging probe has a longitudinal relaxivity of 3.92mM-1∙s-1 and a low r2/r1 ratio of 1.27, both of which are critical for T1-weighted contrast agents. The maximum emission of Fe-CQDs locates at 450nm under 375nm excitation, which also can be applied to fluorescence imaging. Biotoxicity assessment showed good biocompatibility of the Fe-CQDs. The in-vitro experiments with A549 cells indicated that the Fe-CQDs are viable candidates as dual-mode (MR/fluorescence) imaging nanoprobes. For in-vivo experiments, they exhibit high contrast efficiency, thereby improving the positive contrast in T1-weighted MR images. In-vivo time-dependent MRI of major organs showed that the Fe-CQDs undergo fast glomerular filtration and can evade immuno-absorption due to their ultra-small size and excellent biocompatibility. Graphical abstract Schematic presentation of the synthesis of Fe-CQDs and applications to magnetic resonance and fluorescent dual-mode imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call