Abstract

The potential of barium titanate (BT) to be electrically active makes it a material of interest in regenerative medicine. To enhance the understanding of this material for orthopedic applications, the in vitro biocompatibility of porous BT fabricated using a direct foaming technique was investigated. Characterization of the resultant foams yielded an overall porosity between 50 and 70% with average pore size in excess of 30 µm in diameter. A mouse osteoblast (7F2) cell line was cultured with the BT to determine the extent of the foams' toxicity using a LDH assay. After 72 h, BT foams showed a comparable cytotoxicity of 6.4 ± 0.8% to the 8.4 ± 1.5% of porous 45S5 Bioglass®. The in vitro inflammatory response elicited from porous BT was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line (THP-1). Results indicate that the BT foams do not cause a significant inflammatory response, eliciting a 9.4 ± 1.3 pg of TNF-α per mL of media compared with 20.2 ± 2.3 pg/mL from untreated cells. These results indicate that porous BT does not exhibit short term cytotoxicity and has potential for orthopedic tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call