Abstract

The development of a simple, biocompatible, pH sensor with a wide range of detection, using a single fluorescent probe is highly important in the medical field for the early detection of diseases related to the pH change of tissues and body fluids. For this purpose, europium-doped fluorapatite (FAP: Eu) nanoparticles were synthesized using the coprecipitation method. Doping with the rare earth element europium (Eu) makes the non-luminescent phosphate mineral fluorapatite, luminescent. The luminous response of the sample upon dissolution in hydrochloric acid (HCl), in highly acidic to weakly basic media, makes it a potential pH sensor. A linear variation was observed with an increase in pH, in both the total intensity of emission and the R-value or the asymmetry ratio. The ratiometric pH sensing enabled by the variation in R-value makes the sensor independent of external factors. The structural, optical, and photoluminescent (PL) lifetime analysis suggests a particle size-dependent pH sensing mechanism with the changes in the coordinated water molecules around the Eu3+ ion in the nanoparticle. Given its exceptional biocompatibility and pH-dependent fluorescence intensity for a wide range of pH from 0.83 to 8.97, the probe can be used as a potential candidate for pH sensing of biological fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call