Abstract

A polypyrrole based conducting scaffold was developed by incorporating polypyrrole–alginate (PPy–Alg) blend with chitosan using lyophilization technique and employed this composite as a substrate for bone tissue engineering. PPy–Alg blend was developed by oxidative chemical synthesis of polypyrrole using FeCl3 as oxidizing agent and characterized. The physiochemical characterization of the scaffold was done using SEM, FT-IR along with porosity measurement, swelling and in vitro degradation studies. Surface conductivity of the scaffolds was analyzed using Scanning Electrochemical microscopy (SECM). Results from cell viability and cell proliferation with MG-63 cells using Alamar blue assay confirmed the cytocompatible nature of the developed scaffold. In vitro biomineralization ability of the scaffold was assessed and thus the effectiveness of PPy–Alg/chitosan scaffold in the field of tissue engineering was evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.