Abstract

One of the greatest benefits of nanomedicine elucidated to date includes the non-invasive tracking and monitoring of living organisms by the selective uptake of harmless metallic nanoparticles. Several nanoscale probes have been employed for biomolecular imaging. Among them, fluorescent nanoscale silicon materials have been recently established with a strong and safe potential for bioimaging and biosensing applications due to their bright fluorescence coupled with strong photostability, biocompatibility and negligible toxicity. Herein, we developed high-quality silicon nanomaterials (4–5 nm; SiNPs) as biological fluorescent probes for bioimaging of living organisms through an easy aquatic synthesis method with a quantum yield of ∼8%. In this regard, we report that the presently synthesized SiNPs-based sensors/probes are attractive materials for solvent-based fluorescence measurements and are biocompatible, non-toxic, highly photo-stable and pH stable. Most importantly, their fluorescence lifetime is much longer than that of native probes in living cells. Thus, these presently formulated SiNPs are improved fluorescent probes for in vivo biological imaging in zebra fish embryos as well as numerous other living organisms and, thus, should be further studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call