Abstract

This paper presents the fabrication of a benzocyclobutene (BCB) polymer-based intracortical neural implant for reliable and stable long-term implant function. BCB polymer has many attractive features for chronic implant application: flexibility, biocompatibility, low moisture uptake, low dielectric constant and easy surface modification. A 2 µm thick silicon backbone layer was attached underneath a flexible BCB electrode to improve mechanical stiffness. No insertion trauma was observed during penetrating into the dura of a rat. In vitro cytotoxicity tests of the completed BCB electrode revealed no toxic effects on cultured cells. The modified BCB surface with a dextran coating showed a significant reduction in 3T3 cell adhesion and spreading, indicating that this coating has the potential for lowering protein adsorption, minimizing inflammatory cell adhesion and glial scar formation in vivo, and thereby enhancing long-term implant performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.