Abstract
Polyesters produced by ring-opening polymerization (ROP) of cyclic monomers using organocatalysts were well developed in academia. Industrially viable ROPs were polymerizations at elevated temperatures in the bulk, thus desirable features of useful organocatalysts would be thermal stable, reasonably active in fast polymerization but mild enough to avoid transesterification. More importantly, the polyesters containing residue organocatalyst should met biosafety regulations. In these regards, series of pyridinium halides readily prepared by one step from mass-produced pyridines and hydrohalic acids were evaluated in ROPs of l-lactide (LLA), trimethylene carbonate (TMC), δ-valerolactone, and ε-caprolactone in the bulk. An optimal catalyst 4-(N,N-dimethylamino)pyridine hydrochloride (DMAP·HCl) was examined in the catalytic performances in ROPs of LLA, TMC, and diblock copolymerization affording PTMC-b-PLLA. Bulk ROP of LLA at 140 °C produced PLLAs by near quantitative conversions with precise molecular weights (Mn,NMR = 3.3–16.6 kg mol−1) and narrow dispersities (Đ = 1.13–1.17). Kinetics data, chain extension experiments, and MALDI-ToF MS analysis all supported the controlled/living nature of the ROPs. A bifunctional activation mechanism in which pyridinium activated the monomer and halide activated the initiator/chain end was proposed and validated by 1H NMR and 13C NMR titrations. Poly(l-lactide) samples prepared by bulk ROPs of LLA that containing residue catalyst DMAP·HCl were tested by MTT assay in L929 mouse fibroblasts in vitro. High level of relative growth rate (RGR 93.6–96.8%) revealed favorable biosafety of the sample PLLAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.