Abstract
Up to now, different surgical techniques and stent systems have already been developed and tested for the continuous and adequate ventilation of the frontal sinuses. However, the results achieved still remain poor. Magnesium-based implants have been successfully used in numerous clinical applications. Offering excellent biocompatibility and biodegradability it may be the ideal material for the development of novel implants of the nasal sinus. Here, we present for the first time results on the behaviour of magnesium alloy in a unique environment, i.e. in contact to the nasal mucosa, air and nasal secretion. In a prospective longitudinal study, magnesium fluoride-coated MgNd2 specimens were implanted in the frontal sinuses of 12 minipigs for the investigation of biocompatibility and of the interface between the implant and the mucosa. Endoscopic examinations, histopathological evaluation and EDX measurements were performed regularly up to 180days. Endoscopic evaluation showed focal mucosal reaction, however, without affecting the patency of the sinus. In addition, no signs of bacterial infections were observed. The EDX analyses showed a marginal but steady increase in the Mg concentration in the mucosa over 180days. Histological analysis revealed a locally confined moderate mucosal hyperplasia and unspecific inflammatory reaction. Furthermore, we did not find any osteoinductive effects of the magnesium alloy. The results indicate the excellent biocompatibility of the MgNd2 alloy in contact with nasal mucosa and provide a novel material compound and solid proof-of-principle for the development of magnesium-based nasal stents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.