Abstract

Crosslinking of collagen biomaterials increases their resistance to degradation in vivo. Glutaraldehyde (GA) is normally used to crosslink collagen biomaterial, but is often cytotoxic. Diphenylphosphoryl azide (DPPA) has recently been proposed as reagent, but little is known about its effects on cell behavior. In this study, we determined which collagen membrane was the most biocompatible: Paroguide which is crosslinked with DPPA and contains chondroitin sulfate; Opocrin which is crosslinked with DPPA; Biomed Extend which is crosslinked with GA; and Bio-Gide which is left untreated. Cell proliferation and extracellular matrix macromolecule deposition were evaluated in human fibroblasts cultured on the membranes. The GA-crosslinked Biomed Extend membrane and the not-crosslinked Bio-Gide membrane reduced cell growth and collagen secretion compared with DPPA-crosslinked biomembranes. When Paroguide and Opocrin were compared, better results were obtained with Paroguide. The greatest amount of transforming growth factor beta1, a growth factor involved in extracellular matrix macromolecule accumulation and in tissue regeneration, was produced by cells cultured on Paroguide, with Opocrin second. Our data suggest that the DPPA method is more biocompatible than the GA for crosslinking collagen biomaterials and that membranes made of collagen plus chondroitin sulfate are better than membranes made of pure collagen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.