Abstract
Scaffold material is essential in providing mechanical support to tissue, allowing stem cells to improve their function in the healing and repair of trauma sites and tissue regeneration. The scaffold aids cell organization in the damaged tissue. It serves and allows bio mimicking the mechanical and biological properties of the target tissue and facilitates cell proliferation and differentiation at the regeneration site. In this study, the developed and assayed bio-composite made of unique collagen fibers and alginate hydrogel supports the function of cells around the implanted material. We used an in vivo rat model to study the scaffold effects when transplanted subcutaneously and as an augment for tendon repair. Animals’ well-being was measured by their weight and daily activity post scaffold transplantation during their recovery. At the end of the experiment, the bio-composite was histologically examined, and the surrounding tissues around the implant were evaluated for inflammation reaction and scarring tissue. In the histology, the formation of granulation tissue and fibroblasts that were part of the inclusion process of the implanted material were noted. At the transplanted sites, inflammatory cells, such as plasma cells, macrophages, and giant cells, were also observed as expected at this time point post transplantation. This study demonstrated not only the collagen-alginate device biocompatibility, with no cytotoxic effects on the analyzed rats, but also that the 3D structure enables cell migration and new blood vessel formation needed for tissue repair. Overall, the results of the current study proved for the first time that the implantable scaffold for long-term confirms the well-being of these rats and is correspondence to biocompatibility ISO standards and can be further developed for medical devices application.
Highlights
Collagen is a main extracellular matrix protein that supports the structure mainly of skeletal tissues
Implant integration with the healing tendon relies on autologous cells function during tissue regeneration, and the augment facilitated the improvement of this recovery step
The biocompatibility of the collagen-alginate bio composite film was previously assessed in vitro, showing that the scaffold meets the terms of the IS0 10993-5 standards for cytotoxicity
Summary
Collagen is a main extracellular matrix protein that supports the structure mainly of skeletal tissues. Collagen has a main function during the healing process and in cases when the tissue will not heal spontaneously, there is a need to foster it. These bring the collagen to serve both as an essential protein and a major component in biomedical scaffolding for various tissue regeneration approaches. The scaffold facilitates and promotes the autologous stem cells growth and differentiation that will progressively enter the scaffold and replace it by the regenerating tissue. Mar. Drugs 2020, 18, 420; doi:10.3390/md18080420 www.mdpi.com/journal/marinedrugs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.