Abstract
Introduction/Objective. The aim of this paper was to verify the biocompatibility of the newly synthesized nanostructured material based on calcium aluminate after implantation into the subcutaneous tissue of rats. Methods. The study included 18 rats aged 10?11 weeks, divided into two experimental groups (n = 9). In all animals, incision took place on the back and two pockets of 15 mm in depth were made, in which sterile polyethylene tubes with test materials [calcium aluminate cement (ALBO-CA), calcium silicate cement with the addition of hydroxyapatite (ALBO-CSHA), and mineral trioxide aggregate (MTA) for the control group) were implanted. Six rats of each group were sacrificed in three observational periods (seven, 15, 30 days). Pathohistological analysis included inflammation, bleeding, fibrous capsule, and tissue integrity around the implanted material. Results. After seven days of treatment, ALBO-CA and ALBO-CSHA showed better tissue response compared to MTA, with a statistically significant difference in inflammation intensity (p = 0.2781). The difference in vascular congestion and thickness of the fibrous capsule after implantation of ALBO-CA material compared to MTA was also statistically significant (p = 0.5567). At the end of the 30-day evaluation period, an identical inflammatory response of connective tissue at the site of implanting ALBO-CA, ALBO-CSHA, and MTA (score of 0.7) was recorded. The formation of thick or moderately thick fibrous capsule was found to be the thickest in ALBO-CA (grade 3.7). There were no statistically significant differences between the parameters analyzed after 30 days. Conclusion. Newly synthesized ALBO-CA showed a satisfactory tissue response and confirmed biocompatibility after implantation in subcutaneous tissue of rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.