Abstract

One of the common bioactive materials used for clinical and biomedical applications is hydroxyapatite (HAp). Bio-waste materials are one of the major natural sources for the preparation of this bio-ceramic powder. Herein, naturally derived nano-HAp was prepared using the ball milling process after annealing of waste pigeon bones at 850 °C followed by cold-pressing the nanoparticles and re-sintering at 850, 950, 1050, and 1150 °C. The ball-milled pigeon-derived nano-hydroxyapatite (PHA) had an average particle size in the range of 50–250 nm and the Ca/P ratio of the sample sintered at 1050 °C was 1.7. Moreover, the hardness and compressive strength of sintered nano-HAp were improved to 47.57 MPa and 3.7 GPa, respectively by increasing the sintering temperature. Furthermore, alkaline phosphatase analysis and MTT assay of PHA indicated significant enhancement in the activity and proliferation of osteoblast cells during the culturing period in comparison to synthetic HAp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call