Abstract
The biocompatibility of polylactic acid (PLA) and polyglycolic acid (PGA) copolymers, employed in manufacturing bone-graft substitutes, is affected by their chemical composition, molecular weight and cell environment, and by the methods of polymerization and processing. Their in vitro bioactivity on human osteoblasts has been investigated very little. We first evaluated the behavior of primary human osteoblasts cultured in close contact with 75:25 and 50:50 PLA-PGA copolymers for 14 days adopting a cell culture system that allowed us to evaluate the influence of direct contact, and of factors released from polymers. The copolymers had no negative influence on cell morphology, cell viability and proliferation. Alkaline phosphatase (ALP) activity and osteocalcin production were also not affected. The initial adhesion of osteoblasts on implant surfaces requires the contribution of integrins, acting as a primary mechanism regulating cell-extracellular matrix (ECM) interactions. We observed that adhesion of osteoblasts to PLA-PGA copolymers, 2h after plating, was reduced by approximately 70% by antibodies capable to block integrin beta(1) and alpha(5)beta(1) complex and only by approximately 30% by an anti-integrin alpha(v) antibody. Therefore, beta(1) integrins may represent a predominant adhesion receptor subfamily utilized by osteoblasts to adhere to PLA-PGA copolymers. These materials do not show any negative influence on cell proliferation and differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.