Abstract

BackgroundThis study aims to investigate the biocompatibility and in vivo osteogenic capability of the novel bone tissue engineering scaffold apatite-wollastonite-magnetic glass ceramic/chitosan (A-W-MGC/CS).MethodsRabbit bone marrow stromal cells (BMSCs) were transfected with adenovirus-human bone morphogenetic protein-2-green fluorescent protein (Ad-hBMP2-GFP). The transfected BMSCs were then inoculated onto the scaffold material A-W-MGC/CS to construct tissue-engineered bone. The attachment and proliferation of BMSCs were observed by scanning electron microscopy (SEM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) detection, respectively. Rabbit models of bone defects were established and divided into three groups. Experimental group 1 was implanted with prepared tissue-engineered bone. Experimental group 2 was implanted with A-W-MGC/CS without transfected BMSCs. The blank group was injected with transfected BMSCs, without implantation of any scaffold. In the 12th week after surgery, the repair of bone defect was observed by X-ray examination, and histological observations of the area of bone defect were performed.ResultsA-W-MGC/CS resulted in good BMSC attachment and had no obvious effects on cell proliferation. In experimental group 1, good repair of bone defect was observed, and the scaffold material degraded completely. In experimental group 2, new bone was formed, but its quality was poor. In the blank group, there was mainly filling of fibrous connective tissues with no observable bone defect repair.ConclusionA-W-MGC/CS possesses good biocompatibility and in vivo osteogenic capability for bone defect repair.

Highlights

  • This study aims to investigate the biocompatibility and in vivo osteogenic capability of the novel bone tissue engineering scaffold apatite-wollastonite-magnetic glass ceramic/chitosan (A-W-MGC/CS)

  • The development of tissue engineering technology has allowed the induction of cell differentiation, proliferation, and implantation on biological materials, in turn promoting the repair of a wide range of bone defects

  • MTT detection There was no significant difference in the results of MTT detection between the experimental group and control group (P > 0.05), suggesting that the medium immersing Apatitewollastonite-magnetic glass ceramic (A-W-MGC)/CS did not affect the growth and proliferation of bone marrow stromal cells (BMSCs) (Table 1)

Read more

Summary

Introduction

This study aims to investigate the biocompatibility and in vivo osteogenic capability of the novel bone tissue engineering scaffold apatite-wollastonite-magnetic glass ceramic/chitosan (A-W-MGC/CS). The development of tissue engineering technology has allowed the induction of cell differentiation, proliferation, and implantation on biological materials, in turn promoting the repair of a wide range of bone defects [5,6,7]. Apatite-wollastonite-magnetic glass ceramic/chitosan (A-W-MGC/CS) is compositely prepared from A-W-MGC and chitosan, which can further enhance the biocompatibility and improve the pore structure and degradation characteristics of the scaffold. It can provide suitable pores for cell growth and adhesion and is suitable for the construction of tissue-

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call