Abstract

Successful transplantation of encapsulated islets (bioartificial pancreas) would circumvent problems of islet availability and rejection in the treatment of insulin-dependent diabetes with biological organ replacement. Alginates are widely used as a hydrogel matrix or membrane for immunoprotected transplantation. A major problem in the use of diffusion-based devices is the biocompatibility of the material used. The foreign body reaction after implantation of empty microcapsules into different compartments in rats, dogs and pigs is evaluated in this article. However, biocompatibility of the bioartificial pancreas has three different aspects: reaction of the entrapped islet to the encapsulation technique and material; reaction of the recipient against the incorporated device ( = foreign body reaction); and finally the reaction of the recipient against the encapsulated islet ( = immunology of bioartificial pancreas). It is obvious from different experiments that even if foreign body reactions (reactions against material) are almost abolished the recipient may react against material released from the encapsulated islet. In conclusion, transplantation of encapsulated islets induces various morphological reactions (i.e. inflammation and fibrosis) as a result of a variety of donor and recipient related factors. Therefore, the use of an adequate animal model that reflects the human situation is essential for progress in the development of a bioartificial pancreas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.