Abstract

Hydrogels containing 2-methacryloyloxyethyl phosphorylcholine (MPC) moieties were formed from aqueous solutions with water-soluble MPC polymers with carboxylic acid and alkyl groups because of hydrogen bonding formation. To investigate the biocompatibility and drug release behavior of the hydrogels, we used random- and block-type carboxylic acid MPC polymers, such as poly [MPC-co-methacrylic acid (MA)] (rPMA), poly[MPC-co-4-(2-methacryloyloxyethyl) trimellitic acid (MET)] (rPMT), poly (MA-block-MPC-block-MA) (bPMA) and poly(MET-block-MPC-block-MET) (bPMT), and alkyl MPC polymers, such as poly[MPC-co-n-butyl methacrylate] (PMB) and poly(MPC-co-benzyl methacrylate) (PMBz). We investigated the biocompatibility of the spontaneously formed MPC polymer hydrogels by a hemolysis test and an in vivo injection test. The random MPC polymers having carboxylic acid groups expressed more hemolytic activity compared to the block polymers. The results of the in vivo injection test also indicated low biocompatibility of the carboxylic acid polymers especially at high concentration. The alkyl MPC polymers, the PMB and PMBz showed excellent biocompatibility in both hemolysis and in vivo injection test. However, the hydrogels, the rPMA/PMB hydrogel (rABgel) and the rPMT/PMBz hydrogel (rTZgel) lowered the hemolytic activity of elemental polymers, the rPMA and rPMT. Thus, suppression of the ionization of the carboxylic acid groups is necessary for biocompatibility. We also investigated the drug release behavior with attention to the interaction between the polymer and the drugs. The release behavior of a relatively low-molecular-weight hydrophilic drug, 5-fluorouracil, did not depend on the structure of the polymers. The higher-molecular-weight drugs, ketoprofen and indomethacin, were released faster from the block polymer hydrogel than the random polymer hydrogel, the rABgel, while the highest-molecular-weight drug, doxorubicin, was released faster from the random polymer hydrogel. A probable reason for this is the difference in the molecular structure; that is, the separated hydrophilic and hydrophobic sections in the block polymers constructed pathways where a drug can diffuse. In addition, the rTZgel suppressed the release of a drug with a large number of aromatic rings probably because of the stacking effect. The results of the compression test also suggested the existence of the stacking effect between the rTZgel and the drugs. Based on these results, control of drug release is possible by selecting a reservoir with an appropriate chemical structure to interact with the drug. For example, release of a relatively linear-structured drug with less aromatic rings can be suppressed in the rABgel rather than in the rTZgel. Thus, it can be concluded that if the ionization is suppressed, these MPC polymer hydrogels can be used as a material for a drug reservoir that can be selected according to the drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call