Abstract

Injectable calcium phosphate (Ca-P) cement materials exhibit favorable osteocompatible behavior but are resorbed slowly because of a lack of a bone ingrowth-enabling macroporosity. In this study, poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (average size 66 +/- 25 microm) were incorporated into Ca-P cement to obtain a macroporous Ca-P cement scaffold after PLGA hydrolysis in vivo. Preset PLGA/Ca-P cement composite discs of various weight ratios (0/100, 15/85, 30/70, and 50/50) were implanted subcutaneously and in cranial defects in rats for 12 weeks. Histological analysis revealed that all macropores in the PLGA-containing composites (average pore size 73 +/- 27 microm) were filled with fibrous tissue and blood vessels (subcutaneous implants) and/or bone (cranial implants). Histologically, bone formation appeared most abundant and most consistent in the 30/70 PLGA/Ca-P cement composites. Histomorphometrical evaluation revealed a significant increase in defect fill in the 15/85 and 30/70 PLGA/Ca-P cement composites. Finally, subcutaneous and cranial 50/50 PLGA/Ca-P cement composites had degraded to a large extent, without adequate replacement by bone in the cranial implants. Therefore, we conclude that PLGA/Ca-P cement composites enable tissue ingrowth and show excellent osteocompatibility in weight ratios of 15/85 and 30/70 PLGA/Ca-P cement. In this model, 30/70 PLGA/Ca-P cement composites showed the most favorable biological response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call