Abstract
AbstractWheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), indigenous to North America, quickly adapted from host native grasses to wheat crops (Triticum Linnaeus (Poaceae)) with expansion of agriculture on the Great Plains of North America. Bioclimatic simulation tools, such as Climex, predict the potential geographic distribution and establishment of insects in ecosystems, based on climate. The ecoclimatic index, a measure of ecological suitability, integrates potential population growth with stresses to produce estimates of relative abundance. This simulation software was used to develop a bioclimate model for C. cinctus in western Canada. Results fostered a better understanding of how C. cinctus responded to selected climate variables. Two general circulation models were then applied to assess the response of C. cinctus populations to future climate. Relative to current climate, predicted changes in C. cinctus distribution and relative abundance were greatest for 2030, with a small further increase for 2070. Across the Prairies and Boreal Plains Ecozones, changes in ecoclimatic index were greater than in geographic distribution. Both general circulation models indicated most of this area would be categorised as very favourable. This suggests that the potential for pest populations could expand into areas that do not currently experience economic losses associated with C. cinctus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.