Abstract

Photocatalytic technology holds great promise in renewable energy and environmental protection. Herein, we report the synthesis of a class of polyaniline-sensitized BiOCl core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB). In this unique structure, the ultrathin polyaniline (PANI) as a shell with the thickness of about 1–2 nm, can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCl core can promote the separation of photogenerated carriers from the PANI. We demonstrate that the optimized BiOCl/PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BiOCl and also shows high stability. This work provides a new strategy for the design of a highly efficient hybrid photocatalyst driven by visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.