Abstract

This work provides an overview of progress made, in our laboratory, towards the development of a practical biochipbased technology with a biofluidics system for the detection of E. coli and other pathogens. Efforts have been devoted towards efficient coupling between a compact biofluidics sample/reagent delivery system and an integrated circuit (IC) biochip, consisting of a 2-dimensional photosensor array, for on-chip monitoring of bioassays. The complementary metal-oxide semiconductor (CMOS) technology has been implemented to design and produce the IC biochip, which features a 4x4 array of independently addressable photodiodes that are integrated with amplifiers, discriminators and logic circuitry on a single platform. The CMOS-based biochip offers the advantages of compactness and low power consumption, making it better suited for field use than other array detectors, including CCDs. The biofluidics system includes a 0.4 mL hybridization chamber, which accommodates disposable sampling platforms embedded with bioreceptors for selective capture of pathogen DNA, proteins, or antibodies in discrete zones. The independently operating photodiodes of the IC biochip offer the capability of monitoring of multiple assays. Highlights of this work include highly sensitive detection of E. coli (<50 organisms) and quantitative capability with a linear dynamic range of 3-5 orders of magnitude for various assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.