Abstract

Although fluorine in the form of fluoride minerals is the most abundant halogen in the Earth's crust, only 12 naturally occurring organofluorine compounds have so far been found, and how these are biosynthesized remains a mystery. Here we describe an enzymatic reaction that occurs in the bacterium Streptomyces cattleya and which catalyses the conversion of fluoride ion and S-adenosylmethionine (SAM) to 5'-fluoro-5'-deoxyfluoroadenosine (5'-FDA). To our knowledge, this is the first fluorinase enzyme to be identified, a discovery that opens up a new biotechnological opportunity for the preparation of organofluorine compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.