Abstract

The biochemical complexity and its consequence has been investigated in the amphiploids M x v and CS x v derived from crossing the tetraploid wheat Triticum turgidum var durum cv 'Modoc' and the hexaploid wheat T. aestivum cv 'Chinese Spring', respectively, with Dasypyrum villosum. Electrophoretic analysis of variation in six enzyme systems (GOT, ADH, GPI, SOD, EST, and LPX) and in high molecular weight glutenin seed storage proteins indicated that in the amphiploids these proteins were specified by a minimum of seven sets of homologous genes on wheat and D. villosum chromosomes and that in each set there were allelic differences. The enzymes detected in each amphiploid were fully accounted for by simple additivity of protomers specified by the homologous genes inherited from their parents. The amphiploids also expressed novel oligomeric enzymes not produced in either one of their parents. The ascertained expression for all the alleles inherited by both parents and the resulting biochemical complexity suggested that some peculiar feature of the amphiploids such as high nitrogen content in the plant and in the kernels and their immunity to the powdery mildew disease caused by both Erysiphe graminis f.sp. tritici and E. graminis f. sp. haynaldiae may be the consequence of the indicated complexity but specified by other sets of genes. The biochemical complexity of the M x v amphiploid may be the basis for its versatility as new crop species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.