Abstract

We have previously biochemically characterized three separate sites on the fibronectin (Fn) molecule that interact with IgG. These studies have been extended to examine the interaction of Fn with other classes and subclasses of Ig. By ELISA, a preferential quantitative binding order of Fn to the major Ig classes and subclasses was obtained as follows: IgG greater than IgM greater than IgA, IgG1 greater than IgG3 = IgG4 greater than IgG2, and IgA1 = IgA2. Using fragments of Fn obtained by subtilisin digestion followed by IgM and IgA affinity chromatography, immunoblot analysis using monospecific antisera to separate regions of the Fn molecule, and amino acid sequence analysis, these studies indicate that polyclonal IgA and IgM interact with Fn in the same three regions and under the same ionic conditions as previously described for IgG. Site 1 is a 22-kDa fragment that commences at residue 1 of the Fn molecule. Sites 2 (16 kDa) and 3 (26-29 kDa) begin at residues 588 and 1597, respectively. Under physiological conditions a monoclonal antibody that recognizes site 1 completely inhibited the interaction of intact Fn with IgG, IgM, and IgA. Therefore, this is the only physiologically active site in the intact molecule. Aggregated but not monomeric IgG competitively inhibited the binding of Fn to IgG-coated microtiter ELISA plates; thus, this interaction can take place in a fluid-phase system. These results indicate that Fn can potentially interact with immune complexes and aggregates of all Ig in the circulation and thus may play a significant role in both their clearance and deposition in Fn-containing tissues, such as occurs in immune-complex-related disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.