Abstract

Using biochemical methods, we have examined the effect of two factors that might play a role in the mechanism of the biological activity of cisplatin at elevated temperatures (>37 degrees C). We show that increased temperatures result in distinct alterations in the modification of the target DNA by cisplatin, and in the repair of these modifications. Our in vitro results support the view that the enhanced DNA-cross-linking efficiency of cisplatin and the lower efficiency of native DNA repair mechanisms at higher temperature play at least a partial role in the potentiation of the antitumor effects of cisplatin under conditions of mild hyperthermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.