Abstract
The labeling of cystine residues with [1-14C]iodoacetic acid showed that urinary preparations from patients with aplastic anemia contained 3.06 X 10(-9) mol of sulfhydryl groups and 2.90 X 10(-7) mol of half-cystine as disulfide bonds in the native state, and 6.36 X 10(-7) mol in the denatured state per absorbance unit of protein, respectively. Sulfhydryl reagent-treated proteins retained full activity of megakaryocyte colony-stimulating factor (Meg-CSF) and erythropoietin (Epo), except with DTNB-treated protein. Reduction-carboxymethylation and reduction-mercuration resulted in complete loss of Meg-CSF and Epo activities, suggesting that one of the essential chemical groups of Meg-CSF and Epo is a disulfide bond. Reduction of disulfide bonds at neutral pH revealed that Meg-CSF is less susceptible to reduction than Epo. Reactivation occurred by spontaneous reoxidation in most of the reduced Meg-CSF (92.6%) and part of the reduced Epo (22.1%). These molecular behaviors may reflect differences in the spatial configurations of Meg-CSF and Epo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.