Abstract

The physical properties of brain and pituitary somatostatin receptors were characterized using photocrosslinking techniques. Somatostatin receptors in rat corpus striatum and anterior pituitary membranes were covalently bound to the non-reducible somatostatin analog, [ 125I]CGP 23996, using the crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate and ultraviolet light. In striatal membranes, a protein of 60,000 mol. wt was labeled by [ 125I]CGP 23996. The binding was potently inhibited by somatostatin analogs but not by other biologically active peptides. The labeling of the 60,000 mol. wt protein by [ 125I]CGP 23996 was diminished by guanine triphosphate gamma thiol, which is consistent with the labeling of a somatostatin receptor coupled to guanine triphosphate binding proteins. The migration of the [ 125I]CGP 23996 labeled 60,000 mol. wt protein in native sodium dodecyl sulfate-gels was not affected by the reducing agent dithiothreitol, indicating that there is a general lack of disulfide bridges in the striatal somatostatin receptor. The striatal somatostatin receptor was solubilized with the detergent 3-[(3-cholamidopropyl)-dimethylaminoio]-1-propanesulfonate and specifically bound to the lectin wheat germ agglutinin, suggesting that the striatal somatostatin receptor is a glycoprotein. [ 125I]CGP 23996 also labeled a 60,000 mol. wt protein in anterior pituitary membranes. The characteristics of [ 125I]CGP 23996 binding to anterior pituitary membranes were consistent with the labeling of a somatostatin receptor. Interestingly, a comparison of the [ 125I]CGP 23996 labeled material from striatal and anterior pituitary membranes by two-dimensional polyacrylamide gel electrophoresis revealed the presence of several striatal somatostatin receptors of varying charge (pI values between 6 and 6.5) but only a single pituitary receptor. These findings indicate that physical differences may exist between subtypes of somatostatin receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.