Abstract
Double-stranded RNA (dsRNA) is discovered to participate in the regulation of gene expression in both bacterial and eukaryotic cells. Members of ribonuclease III (RNase III) family recognize RNA motifs and cleave substrates at specific sites in a divalent-metal-ion-dependent manner. In this study, we find the RNase III from Bacillus Calmette Guerin (BCG-RNase III) cleaves small hairpin RNA based on the conserved stem structure associated with Mycobacterium 16S ribosomal RNA precursor at specific sites which are not determined. To evaluate the influence of remnant endogenous ribonucleases from expression host on RNA cleavage assays for RNase III, we use E44A and D48A mutant of the enzyme to perform RNA cleavage assays and find that remnant ribonucleases have no effect on cleavage assays. The RNA cleavage activity of the enzyme can be supported by Mg(2+), Mn(2+), and Co(2+) and enhanced with the increasing salt concentration. The catalytic activity of the enzyme is exhibited when the temperature of the reaction buffer ranges from 30 to 55 °C and the pH of the buffer from 7.0 to 10.0. Two major cleavage sites in RNA substrate are identified using RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.