Abstract

Abstract. Many conventional analysis techniques achieve a high-detection sensitivity; however, they are equipment or time expensive due to a multi-step procedure. Sensor concepts, introduced in this work, using piezoresistive pressure sensor chips with integrated analyte-sensitive hydrogels enable inexpensive and robust biochemical sensors, which are miniaturized and in-line capable. For these sensor setups, it is important to optimize current established analyte-sensitive, reversible and biocompatible hydrogels for pH and glucose monitoring of chemical and biochemical processes. Therefore, low-viscous monomer mixtures based on hydroxypropyl methacrylate (HPMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), tetraethylene glycol dimethacrylate (TEGDMA) and ethylene glycol (EG) were prepared in molar ratios of 70∕30∕01∕20, 60∕40∕01∕20 and 60∕40∕02∕20, respectively. Redox-polymerization of these pre-gel solutions were realized with N,N,N′,N′-tetramethylethylenediamine and ammonium persulfate. The reversible pH-sensitive swelling behavior of hydrogels with compositions were compared. By using the photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone, the free radical photopolymerization could be implemented leading to an increase of the swelling degree (SG). Glucose-sensitive hydrogels were prepared via immobilization of glucose oxidase in HPMA–DMAEMA–TEGDMA–EG hydrogel discs. These showed increasing swelling degrees with higher glucose concentrations in aqueous media and a reversible swelling behavior. The synthesized hydrogels were integrated in different piezoresistive sensors of different designs. The pH-depending course of the output voltage of a dip sensor with photopolymerized 60∕40∕02∕20 hydrogel was studied in detail. Besides the usage of a dip sensor, two implantable, parylene C-coated setups are presented. The implantable sensor with long isolated gold bond wires was proved to be functional even after storage in aqueous media for several days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.