Abstract

For both nitrogen and carbon metabolism there exist specific regulatory mechanisms to enable cells to assimilate a wide variety of nitrogen and carbon sources. Superimposed are regulatory circuits, the so called nitrogen and carbon catabolite regulation, to allow for selective use of “rich” sources first and “poor” sources later. Evidence points to the importance of specific regulatory mechanisms for short term adaptations, while generalized control circuits are used for long term modulation of nitrogen and carbon metabolism. Similarly a variety of regulatory mechanisms operate in amino acid metabolism. Modulation of enzyme activity and modulation of enzyme levels are the outstanding regulatory mechanisms. In prokaryotes, attenuation and repressor/operator control are predominant, besides a so called “metabolic control” which integrates amino acid metabolism into the overall nutritional status of the cells. In eukaryotic cells compartmentation of amino acid metabolites as well as of part of the pathways becomes an additional regulatory factor; pathway specific controls seem to be rare, but a complex regulatory network, the “general control of amino acid biosynthesis”, coordinates the synthesis of enzymes of a number of amino acid biosynthetic pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call