Abstract

ABSTRACT A bacterial strain ASLT-13 was successfully isolated from activated sludge and identified as Pseudomonas amygdali. Gas chromatograph-mass spectrometer (GC-MS) analysis indicated that strain ASLT-13 could completely mineralize di 2-ethyl hexyl phthalate (DEHP). DEHP was first metabolized from the longer side chain of the benzene ring into shorter branches (Phatlalic mono-esters) like Dibutyl phthalate (DBP) under the action of degrading genes. DBP was then converted into di-methyl phthalate (DMP), and then hydrolysed to phthalic acid (PA). PA was eventually converted to CO2 and H2O through the TCA cycle. The optimal conditions for immobilization were the sodium alginate (SA) concentration of 6%, CaCl2 concentration of 5%, ratio of bacteria and SA of 1:1, crosslinking time of 6 h. Bacterial quantity and community structure in sequencing batch reactors (SBRs) was investigated by q-PCR and high-throughput sequencing. The results indicated that DEHP removal efficiency was significantly enhanced by immobilization. Arthrobacter, Acinetobacter, Bacillus and Rhodococcus were the predominant genera for DEHP degradation. This study suggested that the cell immobilization technology had a potential application in DEHP wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.