Abstract

Combination of low doses of de novo pyrimidine biosynthesis inhibitors with 5-fluorouracil (FU) has been proposed to increase the antitumor activity of FU. Brequinar is such an inhibitor that has little clinical anti-tumor effect when used alone. We determined the clonogenic survival of MGH-U1 cells treated with FU +/- leucovorin (LV) +/- brequinar and examined the effects of these treatments on thymidylate synthase (TS). After 24 h exposure, the concentrations resulting in 50% inhibition of cell growth (IC50) for brequinar, FU, and FU+LV (100 microM) were 0.4, 20, and 10 microM, respectively. Both 24 h pretreatment and 48 h continuous treatment with the IC10 (0.1 microM) of brequinar increased the cytotoxicity of FU but did not enhance that of FU+LV. Simultaneous 24 h exposure to 0.1 microM brequinar and FU +/- LV did not increase the cytotoxicity of FU +/- LV. Intracellular cytidine triphosphate (CTP) and uridine triphosphate (UTP) pools, free TS binding sites, and levels of free fluorodeoxyuridine monophosphate (FdUMP) and deoxyuridine monophosphate (dUMP) were measured in cells pretreated with 0.1 microM brequinar for 24 h alone or followed by a 2-h exposure to FU (25 microM) +/- LV (100 microM). In brequinar-treated cells, CTP and UTP pools amounted to 68% and 46% of control values, respectively. The free TS binding sites remaining amounted to 70% of control values in cells treated with FU and 9% of control levels in those treated with FU+brequinar. Free FdUMP levels increased 5-fold in cells pretreated with brequinar as compared with those treated with FU alone. The increased formation of FdUMP was inhibited by simultaneous exposure to 100 microM hypoxanthine and 25 microM FU. Intracellular dUMP levels were not affected by brequinar. We conclude that a low dose of brequinar increases the cytotoxicity of FU but does not enhance that of FU+LV when exposure to brequinar precedes FU treatment. This potentiation appears to be mediated by the increased formation of FdUMP as a consequence of an increase in the cosubstrate phosphoribosyl pyrophosphate (PRPP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.