Abstract

Allosteric regulation of protein function is ubiquitous in biology. Allostery originates from ligand-mediated alterations in polypeptide structure and/or dynamics, which produce a cooperative kinetic or thermodynamic response to changing ligand concentrations. Establishing a mechanistic description of individual allosteric events requires both mapping the relevant changes in protein structure and quantifying the rates of differential conformational dynamics in the absence and presence of effectors. In this chapter, we describe three biochemical approaches to understand the dynamic and structural signatures of protein allostery using the well-established cooperative enzyme glucokinase as a case study. The combined application of pulsed proteolysis, biomolecular nuclear magnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry offers complementary information that can used to establish molecular models for allosteric proteins, especially when differential protein dynamics are involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.