Abstract

The pathogenic mechanisms whereby the Thr104Ile and Tyr108Cys mutations in the gonadotropin-releasing hormone receptor (GnRHR) gene cause hypogonadotropic hypogonadism in humans are unknown. Transient expression of Thr104Ile and Tyr108Cys mutants in COS-7 cells revealed that both GnRHR mutants neither bind nor respond to agonist. Removal of Lys191 rescued function of both mutants, while addition of a carboxyl-terminal targeting sequence only rescued function of the Thr104Ile mutant. Exposure to the pharmacoperone In3 rescued almost completely Thr104Ile mutant function to wild-type levels, whereas rescue was partial for the Tyr108Cys GnRHR. Additional mutations that block formation of bridges involving Cys108 showed that a Cys108–Cys200 disulfide bridge is the predominant moiety formed in the Tyr108Cys mutant. Thr104Ile and Tyr108Cys GnRHRs are misfolded structures whose function is rescuable by genetic and/or pharmacological strategies. The Tyr108Cys mutant forms an aberrant disulfide bridge that prevents formation of the required Cys14–Cys200 bridge essential for GnRHR plasma membrane expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call